

A Fast, Compact TPC with GEM Readout for Tracking and Electron Identification at RHIC

Craig Woody

Brookhaven National Lab

Linear Collider Workshop Berkeley, CA

October 18, 2003

Participants

BNL

Physics

C.Woody, B.Azmoun, M.Sivertz, J.Mitchell, M.Purschke

Instrumentation

P.O'Connor, B.Yu, V.Radeka, G.Smith, J-F.Pratte

Yale

N.Smirnov, R.Majka

Nevis

C-Y.Chi, W.Sippach

Tokyo

K.Ozawa, T.Isobe, M.Inuzuka, H.Hamagaki, T. Sakaguchi, F.Kajihara, T.Gunji, N.Kurihara, S.Sawada (KEK), S.Yokaichi (RIKEN)

Weizmann

I.Tserruya, I.Ravinovich, L. Shekhtman, A.Kozlov, Z.Fraenkel

Stony Brook

A.Milov

Joint R&D with LEGS

PHENIX and STAR at RHIC

PHENIX and STAR Upgrade Plans

Extended Physics goals

- Particle Identification at high Pt
- □ Charm/Beauty measurements
- □ Low Mass Dilepton Pairs
- High Pt and Jets

PHENIX Detector upgrades

- Aerogel Cerenkov detector
- Silicon Vertex Tracker
- HBD and inner TPC
- Enhanced muon trigger

STAR Detector Upgrades

- DAQ upgrade (\rightarrow 100 Hz \rightarrow KHz)
- Upgrade readout electronics
- RPC TOF detector
- Silicon Active Pixel Vertex detector
- New fast, compact TPC

Physics measurements addressed by the Fast, Compact TPC in PHENIX

- Low mass lepton pairs and vector mesons
- Charm and B physics with resolved secondary verticies
 - low mass tracking just outside vertex detector
 - allows measurement in both heavy ion and pp running
- Improved inner tracking for PHENIX
 - increased h and f coverage (needed for jet and g-jet physics)
 - tracking through the magnetic field
 (improves momentum resolution, the ability to measure real low p_T tracks, and to reject high p_T background tracks)

TPC/HBD Detector

GFMs are used for both TPC and HBD

- Fast, compact TPC R<70 cm, L< 80 cm, $T_{drift} \le 4$ msec
- Serves as an inner tracking detector in both HI and pp, providing tracking through the central magnetic field

Df = 2p,
$$|h| \le 1.0$$

Dp/p ~ .02p

- Provides electron id by dE/dx
 ⇒ e/p separation below 200 MeV
- HBD is a proximity focused Cherenkov detector with a ~ 50 cm radiator length
- Provides electron id with minimal signals for charged particles
 - ⇒ "Hadron Blind Detector"

PHENIX Inner Magnetic Field

Hadron Blind Detector

Multistage GEM detector with CsI Photocathode

- Csl photocathode deposited on outer GEM foil (must first deposit Ni+Au on GEM foil)
- Multistage GEM used to detect few tens of photoelectons
- Minimal ionization for charged particles in region above first GEM foil
- Fairly coarse segmentation of readout plane (~ 10 cm² pads)

Choice of Gases

HBD

- Need deep UV transparency for highest photoelectron yield
- Windowless design ⇒ same gas for radiator as working gas for GEMs

Gas	Ecutoff (eV)	N ₀ (cm ⁻¹)	dE/dx (keV/cm)
CF ₄	11.5	936	7
CH ₄	8.5	185	1.5
Ne	15	2664	1.6
Ar	9	255	2.4

TPC

- Fast drift velocity (~ 10 cm/msec)
- Low diffusion
- High dE/dx
- Same drift gas as working gas for GEMs

CF₄ (or mixtures containing CF₄) look most promising

Would like to find a single gas (or gas mixture) which would work as a drift gas, radiator gas and working gas for GEMs

HBD R&D at Weizmann

See talk by I.Ravinovich (N25-3, Gas Detectors II, Wed, 10/22, 10:30-12:00)

Triple GEM operating in CF₄ with CsI photocathode

PHENIX TPC Tracking Simulation

TPC Readout

Readout parameters

Number of pads	80K
Pad size	2x10 mm ²
Drift time	3.5 m sec
Sampling rate	40 MHz (25 ns)
Sampling resolution	2.5 mm, 8 bits
Number of samples	140
Unsuppressed data volume	11 MB
Suppressed data volume (~1/10)	1 MB
Actual data volume	100 KB
Buffer latency	4 msec
Readout time	40 msec
Data transmission rate	200 Gbit/sec
Power per channel	100 mW
Total power	8 KW

Requirements

- Very high density readout
- Need to minimize power
- Low noise, zero suppression
- Minimize data volume (triggering)

TPC/HBD readout electronics

- High density, low power preamp and shaper (custom ASIC)
- 40-50 MHz, 8-10 bit FADC (TI, AD Nevis)
- Digital baseline subtraction, zero suppression
- Provide buffering for Level 1 trigger (~ 5 events)

Similar 32 ch preamp/shaper being developed for medical imaging 0.18 mm CMOS, ~ 4 mW per channel Final ASIC 4.3 x 1.6 mm²

See talk by J-F. Pratte (N1-7, Analog & Digital Circuits I, Monday, 10/20, 13:30-15:15)

Interpolating Pad Readout

Two Intermediate Strips

Single Intermediate Zigzag

B. Yu et.al., IEEE Trans. Nucl. Sci. Vol. 50, No. 4. (2003) 836-841

Fine "Zigzag" pattern

Overall position error: 93µm rms

Including ~ 100μm fwhm x-ray p.e. range, 100μm beam width, alignment errors

Test Drift Cell

Drift Stack (presently ~ 30 cm drift)

Used to study

- Drift velocities
- Drift lengths
- Diffusion parameters
- Energy loss (dE/dx)
- Study impurities
- Readout structures
- Field cage design

Lab 2-86 in Physics

Lower movable source

Drift Cell Measurements

Charge Distribution from Drift Cell

(top source, 2 mm pad readout)

Testing Small 3M Foils

(courtesy of J. Collar, Univ. of Chicago)

80 mm (55 mm) holes spaced in a hexagonal pattern with 140 mm pitch (approx. same as CERN foils)

Visually looks to be excellent quality

3 stage GEM with three 1" dia. 3M foils (2 x 1.5 mm transfer gaps + 2 mm induction gap)

Comparison of Small Triple GEMS

3M GEMs give higher gain and have somewhat different slopes

Gain Stability - Small 3M GEMs

We observe a large gain variation with time with the small 3M GEMs

Time scales involved imply a possible charging effect in the foils

(Gas: 35 ppm H_2O_1 < 1ppm O_2)

Gain Stability - Small CERN GEMs in Ar/CO₂

No large gain variations observed with small CERN GEMs

Large (10x10 cm²) 3M GEM Foils

- 1st batch "undercut" (faster etching kapton ⇒ "over etched")
- 2nd batch "conical" (standard kapton but smaller holes)

(70mm \rightarrow 40 mm vs 85 mm \rightarrow 55 mm)

Comparision of Gain Curves for 10x10 cm² Foils

Gain Stability - Large Foils

TPC Prototype - To be built this year

- Full size module
- Tests field cage design
- Tests materials to be used in actual construction
- Allows testing with cosmic rays
- Provides structure on which to design and study readout plane
- Test bench for new readout electronics

Summary

- We have an ambitious goal to build a single detector that will serve many purposes:
 - Fast drift, high resolution TPC
 - Hadron Blind Cherenkov Detector
 - Operate in high multiplicity heavy ion and high luminosity pp collisions
- Requires meeting new challenges in detector technologies
 - GEM detectors w/CsI photocathodes
 - Operation with CF₄
 - New, high density, low power readout electronics
 - High data volumes and data rates
- We need a supplier of good quality GEM foils for all future development work, and are interested in working with all potential vendors